106 lines
3.0 KiB
Python
106 lines
3.0 KiB
Python
import torch
|
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
|
from qwen_vl_utils import process_vision_info
|
|
from appPublic.worker import awaitify
|
|
from appPublic.jsonConfig import getConfig
|
|
from ahserver.serverenv import ServerEnv
|
|
from ahserver.webapp import webapp
|
|
|
|
class Qwen2VLClass:
|
|
def __init__(self, modelname):
|
|
# default: Load the model on the available device(s)
|
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
modelname,
|
|
torch_dtype=torch.bfloat16,
|
|
# attn_implementation="flash_attention_2",
|
|
device_map="auto"
|
|
)
|
|
self.min_pixels = 256 * 28 * 28
|
|
self.max_pixels = 1280 * 28 * 28
|
|
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
|
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
# "Qwen/Qwen2-VL-7B-Instruct",
|
|
# torch_dtype=torch.bfloat16,
|
|
# attn_implementation="flash_attention_2",
|
|
# device_map="auto",
|
|
# )
|
|
|
|
# default processer
|
|
self.processor = AutoProcessor.from_pretrained(modelname,
|
|
min_pixels=self.min_pixels,
|
|
max_pixels=self.max_pixels
|
|
)
|
|
|
|
# The default range for the number of visual tokens per image in the model is 4-16384.
|
|
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
|
|
# min_pixels = 256*28*28
|
|
# max_pixels = 1280*28*28
|
|
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
|
|
|
def inference(self, prompt, image, videofile):
|
|
content = [
|
|
{
|
|
"type":"text",
|
|
"text":prompt
|
|
}
|
|
]
|
|
if image:
|
|
if not image.startswith('file:///') \
|
|
and not image.startswith('http://') \
|
|
and not image.startswith('https://'):
|
|
image = f'data:image;base64,{image}'
|
|
content.append({
|
|
"type":"image",
|
|
"image":image
|
|
})
|
|
if videofile:
|
|
if not videofile.startswith('file:///'):
|
|
return 'only local video file support'
|
|
|
|
content.append({
|
|
"type":"video",
|
|
"video":videofile
|
|
})
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": content
|
|
}
|
|
]
|
|
|
|
# Preparation for inference
|
|
text = self.processor.apply_chat_template(
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
)
|
|
image_inputs, video_inputs = process_vision_info(messages)
|
|
inputs = self.processor(
|
|
text=[text],
|
|
images=image_inputs,
|
|
videos=video_inputs,
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
inputs = inputs.to("cuda")
|
|
|
|
# Inference: Generation of the output
|
|
generated_ids = self.model.generate(**inputs, max_new_tokens=128)
|
|
generated_ids_trimmed = [
|
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
]
|
|
output_text = self.processor.batch_decode(
|
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
|
)
|
|
return output_text[0]
|
|
|
|
def main():
|
|
config = getConfig()
|
|
modelname = config.modelname
|
|
m = Qwen2VLClass(modelname)
|
|
g = ServerEnv()
|
|
g.inference = awaitify(m.inference)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
webapp(main)
|