import torch from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info from appPublic.worker import awaitify from appPublic.jsonConfig import getConfig from ahserver.serverenv import ServerEnv from ahserver.webapp import webapp class Qwen2VLClass: def __init__(self, modelname): # default: Load the model on the available device(s) self.model = Qwen2VLForConditionalGeneration.from_pretrained( modelname, torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", device_map="auto" ) self.min_pixels = 256 * 28 * 28 self.max_pixels = 1280 * 28 * 28 # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. # model = Qwen2VLForConditionalGeneration.from_pretrained( # "Qwen/Qwen2-VL-7B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # default processer self.processor = AutoProcessor.from_pretrained(modelname, min_pixels=self.min_pixels, max_pixels=self.max_pixels ) # The default range for the number of visual tokens per image in the model is 4-16384. # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) def inference(self, prompt, image=None, videofile=None): content = [ { "type":"text", "text":prompt } ] if image: if not image.startswith('file:///') \ and not image.startswith('http://') \ and not image.startswith('https://'): image = f'data:image;base64,{image}' content.append({ "type":"image", "image":image }) if videofile: if not videofile.startswith('file:///'): return 'only local video file support' content.append({ "type":"video", "video":videofile }) messages = [ { "role": "user", "content": content } ] # Preparation for inference text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = self.processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = self.model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text def main(): config = getConfig() modelname = config.modelname m = Qwen2VLClass(modelname) g = ServerEnv() g.inference = awaitify(m.inference) if __name__ == '__main__': webapp(main)