This commit is contained in:
yumoqing 2024-11-12 16:39:19 +08:00
parent 8b0b0b9831
commit 05fa9e411c
5 changed files with 153 additions and 2 deletions

View File

@ -1,10 +1,10 @@
# Qwen2-VL deployment instances
# dependents
## dependents
git+https://git.kaiyuancloud.cn/yumoqing/apppublic
git+https://git.kaiyuancloud.cn/yumoqing/ahserver
# preinstallation
## preinstallation
first, create a new python virtual env
```
python3 -m venv ~/vl
@ -39,3 +39,17 @@ sudo isntall.sh
## Change model or http port
there is a config.json file under qwenvl folder, change the "modelname" and "port" value to suite your requirements
## model to use
* Qwen/Qwen2-VL-7B-Instruct-AWQ
* Qwen/Qwen2-VL-7B-Instruct
* Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int4
* Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8
* Qwen/Qwen2-VL-72B-Instruct
* Qwen/Qwen2-VL-72B-Instruct-AWQ
* Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int4
* Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int8
* Qwen/Qwen2-VL-2B-Instruct
* Qwen/Qwen2-VL-2B-Instruct-AWQ
* Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4
* Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int8

105
app/qwenvl.py Normal file
View File

@ -0,0 +1,105 @@
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from appPublic.worker import awaitify
from appPublic.jsonConfig import getConfig
from ahserver.serverenv import ServerEnv
from ahserver.webapp import webapp
class Qwen2VLClass:
def __init__(self, modelname):
# default: Load the model on the available device(s)
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
modelname,
torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
device_map="auto"
)
self.min_pixels = 256 * 28 * 28
self.max_pixels = 1280 * 28 * 28
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2-VL-7B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
self.processor = AutoProcessor.from_pretrained(modelname,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels
)
# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
def inference(self, prompt, image=None, videofile=None):
content = [
{
"type":"text",
"text":prompt
}
]
if image:
if not image.startswith('file:///') \
and not image.startswith('http://') \
and not image.startswith('https://'):
image = f'data:image;base64,{image}'
content.append({
"type":"image",
"image":image
})
if videofile:
if not videofile.startswith('file:///'):
return 'only local video file support'
content.append({
"type":"video",
"video":videofile
})
messages = [
{
"role": "user",
"content": content
}
]
# Preparation for inference
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = self.model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text
def main():
config = getConfig()
modelname = config.modelname
m = Qwen2VLClass(modelname)
g = ServerEnv()
g.inference = awaitify(m.inference)
if __name__ == '__main__':
webapp(main)

29
app/test.py Normal file
View File

@ -0,0 +1,29 @@
import requests
import base64
def file2b64(file_path):
# 读取文件内容
with open(file_path, 'rb') as file:
file_content = file.read()
# 将文件内容转换为Base64编码
base64_encoded_data = base64.b64encode(file_content)
# 将Base64编码的数据转换为字符串
base64_encoded_str = base64_encoded_data.decode('utf-8')
return base64_encoded_str
while True:
print('prompt:')
p = input()
print('input image path:')
i = input()
if p == '' or i == '':
continue
ret = requests.get('http://pd4e.com:10090/api',
params={
'prompt':p,
'image':file2b64(i)
})
print(ret.text)

View File

@ -1,6 +1,7 @@
{
"password_key":"!@#$%^&*(*&^%$QWERTYUIqwertyui234567",
"modelname":"Qwen/Qwen2-VL-7B-Instruct",
"modelname":"Qwen/Qwen2-VL-2B-Instruct",
"logger":{
"name":"qwenvl",
"levelname":"info",

View File

@ -1,2 +1,4 @@
git+https://git.kaiyuancloud.cn/yumoqing/apppublic
git+https://git.kaiyuancloud.cn/yumoqing/ahserver
optimum
auto_gptq