bugfix
This commit is contained in:
parent
8b0b0b9831
commit
05fa9e411c
18
README.md
18
README.md
@ -1,10 +1,10 @@
|
||||
# Qwen2-VL deployment instances
|
||||
|
||||
# dependents
|
||||
## dependents
|
||||
git+https://git.kaiyuancloud.cn/yumoqing/apppublic
|
||||
git+https://git.kaiyuancloud.cn/yumoqing/ahserver
|
||||
|
||||
# preinstallation
|
||||
## preinstallation
|
||||
first, create a new python virtual env
|
||||
```
|
||||
python3 -m venv ~/vl
|
||||
@ -39,3 +39,17 @@ sudo isntall.sh
|
||||
## Change model or http port
|
||||
there is a config.json file under qwenvl folder, change the "modelname" and "port" value to suite your requirements
|
||||
|
||||
## model to use
|
||||
|
||||
* Qwen/Qwen2-VL-7B-Instruct-AWQ
|
||||
* Qwen/Qwen2-VL-7B-Instruct
|
||||
* Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int4
|
||||
* Qwen/Qwen2-VL-7B-Instruct-GPTQ-Int8
|
||||
* Qwen/Qwen2-VL-72B-Instruct
|
||||
* Qwen/Qwen2-VL-72B-Instruct-AWQ
|
||||
* Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int4
|
||||
* Qwen/Qwen2-VL-72B-Instruct-GPTQ-Int8
|
||||
* Qwen/Qwen2-VL-2B-Instruct
|
||||
* Qwen/Qwen2-VL-2B-Instruct-AWQ
|
||||
* Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4
|
||||
* Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int8
|
||||
|
105
app/qwenvl.py
Normal file
105
app/qwenvl.py
Normal file
@ -0,0 +1,105 @@
|
||||
import torch
|
||||
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
||||
from qwen_vl_utils import process_vision_info
|
||||
from appPublic.worker import awaitify
|
||||
from appPublic.jsonConfig import getConfig
|
||||
from ahserver.serverenv import ServerEnv
|
||||
from ahserver.webapp import webapp
|
||||
|
||||
class Qwen2VLClass:
|
||||
def __init__(self, modelname):
|
||||
# default: Load the model on the available device(s)
|
||||
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
modelname,
|
||||
torch_dtype=torch.bfloat16,
|
||||
# attn_implementation="flash_attention_2",
|
||||
device_map="auto"
|
||||
)
|
||||
self.min_pixels = 256 * 28 * 28
|
||||
self.max_pixels = 1280 * 28 * 28
|
||||
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
||||
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
# "Qwen/Qwen2-VL-7B-Instruct",
|
||||
# torch_dtype=torch.bfloat16,
|
||||
# attn_implementation="flash_attention_2",
|
||||
# device_map="auto",
|
||||
# )
|
||||
|
||||
# default processer
|
||||
self.processor = AutoProcessor.from_pretrained(modelname,
|
||||
min_pixels=self.min_pixels,
|
||||
max_pixels=self.max_pixels
|
||||
)
|
||||
|
||||
# The default range for the number of visual tokens per image in the model is 4-16384.
|
||||
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
|
||||
# min_pixels = 256*28*28
|
||||
# max_pixels = 1280*28*28
|
||||
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
||||
|
||||
def inference(self, prompt, image=None, videofile=None):
|
||||
content = [
|
||||
{
|
||||
"type":"text",
|
||||
"text":prompt
|
||||
}
|
||||
]
|
||||
if image:
|
||||
if not image.startswith('file:///') \
|
||||
and not image.startswith('http://') \
|
||||
and not image.startswith('https://'):
|
||||
image = f'data:image;base64,{image}'
|
||||
content.append({
|
||||
"type":"image",
|
||||
"image":image
|
||||
})
|
||||
if videofile:
|
||||
if not videofile.startswith('file:///'):
|
||||
return 'only local video file support'
|
||||
|
||||
content.append({
|
||||
"type":"video",
|
||||
"video":videofile
|
||||
})
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": content
|
||||
}
|
||||
]
|
||||
|
||||
# Preparation for inference
|
||||
text = self.processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = self.processor(
|
||||
text=[text],
|
||||
images=image_inputs,
|
||||
videos=video_inputs,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = inputs.to("cuda")
|
||||
|
||||
# Inference: Generation of the output
|
||||
generated_ids = self.model.generate(**inputs, max_new_tokens=128)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = processor.batch_decode(
|
||||
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
return output_text
|
||||
|
||||
def main():
|
||||
config = getConfig()
|
||||
modelname = config.modelname
|
||||
m = Qwen2VLClass(modelname)
|
||||
g = ServerEnv()
|
||||
g.inference = awaitify(m.inference)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
webapp(main)
|
29
app/test.py
Normal file
29
app/test.py
Normal file
@ -0,0 +1,29 @@
|
||||
import requests
|
||||
import base64
|
||||
|
||||
def file2b64(file_path):
|
||||
# 读取文件内容
|
||||
with open(file_path, 'rb') as file:
|
||||
file_content = file.read()
|
||||
|
||||
# 将文件内容转换为Base64编码
|
||||
base64_encoded_data = base64.b64encode(file_content)
|
||||
|
||||
# 将Base64编码的数据转换为字符串
|
||||
base64_encoded_str = base64_encoded_data.decode('utf-8')
|
||||
|
||||
return base64_encoded_str
|
||||
|
||||
while True:
|
||||
print('prompt:')
|
||||
p = input()
|
||||
print('input image path:')
|
||||
i = input()
|
||||
if p == '' or i == '':
|
||||
continue
|
||||
ret = requests.get('http://pd4e.com:10090/api',
|
||||
params={
|
||||
'prompt':p,
|
||||
'image':file2b64(i)
|
||||
})
|
||||
print(ret.text)
|
@ -1,6 +1,7 @@
|
||||
{
|
||||
"password_key":"!@#$%^&*(*&^%$QWERTYUIqwertyui234567",
|
||||
"modelname":"Qwen/Qwen2-VL-7B-Instruct",
|
||||
"modelname":"Qwen/Qwen2-VL-2B-Instruct",
|
||||
"logger":{
|
||||
"name":"qwenvl",
|
||||
"levelname":"info",
|
||||
|
@ -1,2 +1,4 @@
|
||||
git+https://git.kaiyuancloud.cn/yumoqing/apppublic
|
||||
git+https://git.kaiyuancloud.cn/yumoqing/ahserver
|
||||
optimum
|
||||
auto_gptq
|
||||
|
Loading…
Reference in New Issue
Block a user