77 lines
4.0 KiB
Plaintext
77 lines
4.0 KiB
Plaintext
<misc> 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Adcock AB 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
AlexNet 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Bollacker KD 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
CNN 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
CP 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Chinese knowledge 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
ComplEx 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Connecting language and knowledge bases with 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
ConvE 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
ConvE模型 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
DBLP 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
DL 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
DY 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
GPG 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
GRU 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
GRU的模型 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
HypER模型 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
IJCAI 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
INDSCAL 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
JD 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
JMLR 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
KEQA 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
KGE 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
KGE技术 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Knowledge 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
LM 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Le P, Dymetman M.Le P.LsTM-based mixture-of 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Learning entity and relation 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Learning sequence encoders 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Networks and Machine Learning 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
QA-KG 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Quaternion knowledge 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
RESCAL 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
STransE 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
Tensor factorization 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
TransE[15] 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
TransE在 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
TransE学习实体和关系 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
TransG模型 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
blocking 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
embedding model 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
instance of the 55th 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
knowledge 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
knowledge graph 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
modeling 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
never-ending language learning 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
probabilistic logic programming 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
question answering 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
relation extraction 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
三向张量分解的新型关系学习方法 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
使用事实进行知识图谱嵌入 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
关系 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
关系DirectorOf 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
动态 KGE方法 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
区块链 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
基于知识图谱嵌入的问答框架(KEQA 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
多源信息学习: 随着网络技术的快速发展, 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
大规模知识图谱中 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
学习模型RPJE 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
学习结 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
对话生成 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
对话系统 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
对齐 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
现有知识 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
相似度 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
知 识 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
知识 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
知识图谱 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
知识图谱嵌入技术研究综述 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
知识图谱嵌入技术研究综述 283 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
知识库 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
神 经网络架构 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
结构性质学习 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
网络 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
软件学报 611674ee-1d01-4f39-b0dc-bca896dce7cc
|
|
静态知识 611674ee-1d01-4f39-b0dc-bca896dce7cc |