bugfix
This commit is contained in:
parent
e80c8a3321
commit
ffaa06c8fc
@ -1,6 +1,7 @@
|
||||
{
|
||||
"zmq_url" : "tcp://127.0.0.1:10003",
|
||||
"sample_rate":16000,
|
||||
"vocab_file":"",
|
||||
"remove_silence":false,
|
||||
"modelname":"F5-TTS",
|
||||
"device":"cuda:0",
|
||||
|
265
f5tts.py
265
f5tts.py
@ -12,17 +12,19 @@ from cached_path import cached_path
|
||||
|
||||
from model import DiT, UNetT
|
||||
from model.utils_infer import (
|
||||
load_vocoder,
|
||||
load_model,
|
||||
preprocess_ref_audio_text,
|
||||
infer_process,
|
||||
remove_silence_for_generated_wav,
|
||||
load_vocoder,
|
||||
load_model,
|
||||
preprocess_ref_audio_text,
|
||||
infer_process,
|
||||
remove_silence_for_generated_wav,
|
||||
)
|
||||
|
||||
import os
|
||||
import json
|
||||
from time import time
|
||||
from appPublic.dictObject import DictObject
|
||||
from appPublic.zmq_reqrep import ZmqReplier
|
||||
from appPublic.folderUtils import temp_file
|
||||
from appPublic.jsonConfig import getConfig
|
||||
|
||||
n_mel_channels = 100
|
||||
@ -34,174 +36,43 @@ ode_method = "euler"
|
||||
sway_sampling_coef = -1.0
|
||||
speed = 1.0
|
||||
|
||||
def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence):
|
||||
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
|
||||
if "voices" not in config:
|
||||
voices = {"main": main_voice}
|
||||
else:
|
||||
voices = config["voices"]
|
||||
voices["main"] = main_voice
|
||||
for voice in voices:
|
||||
voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
|
||||
voices[voice]["ref_audio"], voices[voice]["ref_text"]
|
||||
)
|
||||
print("Voice:", voice)
|
||||
print("Ref_audio:", voices[voice]["ref_audio"])
|
||||
print("Ref_text:", voices[voice]["ref_text"])
|
||||
|
||||
generated_audio_segments = []
|
||||
reg1 = r"(?=\[\w+\])"
|
||||
chunks = re.split(reg1, text_gen)
|
||||
reg2 = r"\[(\w+)\]"
|
||||
for text in chunks:
|
||||
match = re.match(reg2, text)
|
||||
if match:
|
||||
voice = match[1]
|
||||
else:
|
||||
print("No voice tag found, using main.")
|
||||
voice = "main"
|
||||
if voice not in voices:
|
||||
print(f"Voice {voice} not found, using main.")
|
||||
voice = "main"
|
||||
text = re.sub(reg2, "", text)
|
||||
gen_text = text.strip()
|
||||
ref_audio = voices[voice]["ref_audio"]
|
||||
ref_text = voices[voice]["ref_text"]
|
||||
print(f"Voice: {voice}")
|
||||
audio, final_sample_rate, spectragram = infer_process(ref_audio, ref_text, gen_text, model_obj)
|
||||
generated_audio_segments.append(audio)
|
||||
|
||||
if generated_audio_segments:
|
||||
final_wave = np.concatenate(generated_audio_segments)
|
||||
with open(wave_path, "wb") as f:
|
||||
sf.write(f.name, final_wave, final_sample_rate)
|
||||
# Remove silence
|
||||
if remove_silence:
|
||||
remove_silence_for_generated_wav(f.name)
|
||||
print(f.name)
|
||||
|
||||
class F5TTS:
|
||||
def __init__(self):
|
||||
config = getConfig()
|
||||
self.sample_rate = config.sample_rate
|
||||
self.remove_silence = config.remove_silence
|
||||
self.modelname = config.modelname
|
||||
self.ref_audio_fn = config.ref_audio_fn
|
||||
self.load_vocoder_from_local = config.is_local or True
|
||||
self.zmq_url = config.zmq_url
|
||||
self.ref_text = config.ref_text
|
||||
self.device = config.device
|
||||
self.cross_fade_duration = config.cross_fade_duration
|
||||
self.gen_ref_audio()
|
||||
self.gen_ref_text()
|
||||
self.replier = ZmqReplier(self.zmq_url, self.generate)
|
||||
self.vocos = load_vocoder(is_local=is_local, local_path="../checkpoints/charactr/vocos-mel-24khz")
|
||||
self.F5TTS_model_cfg = dict(
|
||||
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
|
||||
)
|
||||
self.E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
self.model= self.load_model(self.modelname)
|
||||
|
||||
|
||||
def gen_ref_audio(self):
|
||||
"""
|
||||
gen ref_audio
|
||||
"""
|
||||
audio, sr = torchaudio.load(self.ref_audio_fn)
|
||||
if audio.shape[0] > 1:
|
||||
audio = torch.mean(audio, dim=0, keepdim=True)
|
||||
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
||||
if rms < target_rms:
|
||||
audio = audio * target_rms / rms
|
||||
if sr != self.sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(sr, self.sample_rate)
|
||||
audio = resampler(audio)
|
||||
self.ref_audio = audio
|
||||
self.config = getConfig()
|
||||
self.zmq_url = self.config.zmq_url
|
||||
self.replier = ZmqReplier(self.config.zmq_url, self.generate)
|
||||
# self.vocos = load_vocoder(is_local=True, local_path="../checkpoints/charactr/vocos-mel-24khz")
|
||||
self.load_model()
|
||||
self.setup_voice()
|
||||
|
||||
def run(self):
|
||||
print(f'running {self.zmq_url}')
|
||||
self.replier._run()
|
||||
print('ended ...')
|
||||
|
||||
def gen_ref_text(self):
|
||||
"""
|
||||
"""
|
||||
# Add the functionality to ensure it ends with ". "
|
||||
ref_text = self.ref_text
|
||||
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
||||
if ref_text.endswith("."):
|
||||
ref_text += " "
|
||||
else:
|
||||
ref_text += ". "
|
||||
self.ref_text = ref_text
|
||||
def load_model(self):
|
||||
# load models
|
||||
ckpt_file = ''
|
||||
if self.config.modelname == "F5-TTS":
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
if ckpt_file == "":
|
||||
repo_name = "F5-TTS"
|
||||
exp_name = "F5TTS_Base"
|
||||
ckpt_step = 1200000
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||
|
||||
def load_model(self):
|
||||
# load models
|
||||
if self.modelname == "F5-TTS":
|
||||
model_cls = DiT
|
||||
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
||||
if ckpt_file == "":
|
||||
repo_name = "F5-TTS"
|
||||
exp_name = "F5TTS_Base"
|
||||
ckpt_step = 1200000
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||
elif self.config.modelname == "E2-TTS":
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
if ckpt_file == "":
|
||||
repo_name = "E2-TTS"
|
||||
exp_name = "E2TTS_Base"
|
||||
ckpt_step = 1200000
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||
|
||||
elif self.modelname == "E2-TTS":
|
||||
model_cls = UNetT
|
||||
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||
if ckpt_file == "":
|
||||
repo_name = "E2-TTS"
|
||||
exp_name = "E2TTS_Base"
|
||||
ckpt_step = 1200000
|
||||
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||
|
||||
self.model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
|
||||
|
||||
def split_text(self, text):
|
||||
max_chars = int(len(self.ref_text.encode('utf-8')) / (self.ref_audio.shape[-1] / self.sample_rate) * (25 - self.ref_audio.shape[-1] / self.sample_rate))
|
||||
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
|
||||
print('ref_text', ref_text)
|
||||
|
||||
def cross_fade_wave(self, waves):
|
||||
final_wave = generated_waves[0]
|
||||
for i in range(1, len(generated_waves)):
|
||||
prev_wave = final_wave
|
||||
next_wave = generated_waves[i]
|
||||
|
||||
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
|
||||
cross_fade_samples = int(self.cross_fade_duration * self.sample_rate)
|
||||
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
|
||||
|
||||
if cross_fade_samples <= 0:
|
||||
# No overlap possible, concatenate
|
||||
final_wave = np.concatenate([prev_wave, next_wave])
|
||||
continue
|
||||
|
||||
# Overlapping parts
|
||||
prev_overlap = prev_wave[-cross_fade_samples:]
|
||||
next_overlap = next_wave[:cross_fade_samples]
|
||||
|
||||
# Fade out and fade in
|
||||
fade_out = np.linspace(1, 0, cross_fade_samples)
|
||||
fade_in = np.linspace(0, 1, cross_fade_samples)
|
||||
|
||||
# Cross-faded overlap
|
||||
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
|
||||
|
||||
# Combine
|
||||
new_wave = np.concatenate([
|
||||
prev_wave[:-cross_fade_samples],
|
||||
cross_faded_overlap,
|
||||
next_wave[cross_fade_samples:]
|
||||
])
|
||||
|
||||
final_wave = new_wave
|
||||
return final_wave
|
||||
|
||||
def write_wave(wave):
|
||||
fn = temp_file(suffix='.wav')
|
||||
sf.write(fn, wave, self.sample_rate)
|
||||
return fn
|
||||
self.model = load_model(model_cls, model_cfg, ckpt_file,
|
||||
self.config.vocab_file).to(self.config.device)
|
||||
|
||||
def generate(self, d):
|
||||
msg= d.decode('utf-8')
|
||||
@ -233,13 +104,75 @@ class F5TTS:
|
||||
}
|
||||
return json.dumps(d)
|
||||
|
||||
def setup_voice(self):
|
||||
main_voice = {"ref_audio": self.config.ref_audio_fn,
|
||||
"ref_text": self.config.ref_text}
|
||||
if "voices" not in self.config:
|
||||
voices = {"main": main_voice}
|
||||
else:
|
||||
voices = self.config["voices"]
|
||||
voices["main"] = main_voice
|
||||
for voice in voices:
|
||||
voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
|
||||
voices[voice]["ref_audio"], voices[voice]["ref_text"]
|
||||
)
|
||||
print("Voice:", voice)
|
||||
print("Ref_audio:", voices[voice]["ref_audio"])
|
||||
print("Ref_text:", voices[voice]["ref_text"])
|
||||
self.voices = voices
|
||||
|
||||
|
||||
def inference(self, prompt):
|
||||
text_gen = prompt
|
||||
remove_silence = False
|
||||
generated_audio_segments = []
|
||||
reg1 = r"(?=\[\w+\])"
|
||||
chunks = re.split(reg1, text_gen)
|
||||
reg2 = r"\[(\w+)\]"
|
||||
for text in chunks:
|
||||
match = re.match(reg2, text)
|
||||
if match:
|
||||
voice = match[1]
|
||||
else:
|
||||
print("No voice tag found, using main.")
|
||||
voice = "main"
|
||||
if voice not in self.voices:
|
||||
print(f"Voice {voice} not found, using main.")
|
||||
voice = "main"
|
||||
text = re.sub(reg2, "", text)
|
||||
gen_text = text.strip()
|
||||
ref_audio = self.voices[voice]["ref_audio"]
|
||||
ref_text = self.voices[voice]["ref_text"]
|
||||
print(f"Voice: {voice}, {self.model}")
|
||||
audio, final_sample_rate, spectragram = \
|
||||
infer_process(ref_audio, ref_text, gen_text, self.model)
|
||||
generated_audio_segments.append(audio)
|
||||
|
||||
if generated_audio_segments:
|
||||
final_wave = np.concatenate(generated_audio_segments)
|
||||
fn = temp_file(suffix='.wav')
|
||||
with open(fn, "wb") as f:
|
||||
sf.write(f.name, final_wave, final_sample_rate)
|
||||
# Remove silence
|
||||
if remove_silence:
|
||||
remove_silence_for_generated_wav(f.name)
|
||||
return fn
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
workdir = os.getcwd()
|
||||
config = getConfig(workdir)
|
||||
# workdir = os.getcwd()
|
||||
# config = getConfig(workdir)
|
||||
tts = F5TTS()
|
||||
print('here')
|
||||
tts.run()
|
||||
# tts.run()
|
||||
while True:
|
||||
print('prompt:')
|
||||
p = input()
|
||||
if p != '':
|
||||
t1 = time()
|
||||
f = tts.inference(p)
|
||||
t2 = time()
|
||||
print(f'{f}, cost {t2-t1} seconds')
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user