first commit
This commit is contained in:
commit
60fab4e937
10
conf/config.json
Normal file
10
conf/config.json
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
{
|
||||||
|
"zmq_url" : "tcp://127.0.0.1:10003",
|
||||||
|
"sample_rate":16000,
|
||||||
|
"remove_silence":false,
|
||||||
|
"modelname":"F5-TTS",
|
||||||
|
"ref_audio_fn":"$[workdir]$/samples/test_zh_1_ref_short.wav",
|
||||||
|
"ref_text":"对,这就是我,万人敬仰的太乙真人。",
|
||||||
|
"cross_fade_duration":0
|
||||||
|
}
|
||||||
|
|
272
f5tts.py
Normal file
272
f5tts.py
Normal file
@ -0,0 +1,272 @@
|
|||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
import codecs
|
||||||
|
import re
|
||||||
|
import numpy as np
|
||||||
|
import soundfile as sf
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from cached_path import cached_path
|
||||||
|
from einops import rearrange
|
||||||
|
|
||||||
|
from vocos import Vocos
|
||||||
|
from transformers import pipeline
|
||||||
|
from F5_TTS.model import CFM, DiT, MMDiT, UNetT
|
||||||
|
from F5_TTS.model.utils import (convert_char_to_pinyin, get_tokenizer,
|
||||||
|
load_checkpoint, save_spectrogram)
|
||||||
|
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
from appPublic.dictObject import DictObject
|
||||||
|
from appPublic.zmq_reqrep import ZmqReplier
|
||||||
|
from appPublic.jsonConfig import getConfig
|
||||||
|
|
||||||
|
n_mel_channels = 100
|
||||||
|
hop_length = 256
|
||||||
|
target_rms = 0.1
|
||||||
|
nfe_step = 32 # 16, 32
|
||||||
|
cfg_strength = 2.0
|
||||||
|
ode_method = "euler"
|
||||||
|
sway_sampling_coef = -1.0
|
||||||
|
speed = 1.0
|
||||||
|
|
||||||
|
F5TTS_model_cfg = dict(
|
||||||
|
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
|
||||||
|
)
|
||||||
|
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
||||||
|
|
||||||
|
def chunk_text(text, max_chars=135):
|
||||||
|
"""
|
||||||
|
Splits the input text into chunks, each with a maximum number of characters.
|
||||||
|
Args:
|
||||||
|
text (str): The text to be split.
|
||||||
|
max_chars (int): The maximum number of characters per chunk.
|
||||||
|
Returns:
|
||||||
|
List[str]: A list of text chunks.
|
||||||
|
"""
|
||||||
|
chunks = []
|
||||||
|
current_chunk = ""
|
||||||
|
# Split the text into sentences based on punctuation followed by whitespace
|
||||||
|
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
|
||||||
|
|
||||||
|
for sentence in sentences:
|
||||||
|
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
|
||||||
|
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
|
||||||
|
else:
|
||||||
|
if current_chunk:
|
||||||
|
chunks.append(current_chunk.strip())
|
||||||
|
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
|
||||||
|
|
||||||
|
if current_chunk:
|
||||||
|
chunks.append(current_chunk.strip())
|
||||||
|
|
||||||
|
return chunks
|
||||||
|
|
||||||
|
class F5TTS:
|
||||||
|
def __init__(self):
|
||||||
|
config = getConfig()
|
||||||
|
self.sample_rate = config.sample_rate
|
||||||
|
self.remove_silence = config.remove_silence
|
||||||
|
self.modelname = config.modelname
|
||||||
|
self.ref_audio_fn = config.ref_audio_fn
|
||||||
|
self.ref_text = config.ref_text
|
||||||
|
self.model= self.load_model(self.modelname)
|
||||||
|
self.cross_fade_duration = config.cross_fade_duration
|
||||||
|
self.gen_ref_audio()
|
||||||
|
self.gen_ref_text()
|
||||||
|
self.replier = ZmqReplier(self.zmq_url, self.generate)
|
||||||
|
try:
|
||||||
|
print(f"Load vocos from local path {vocos_local_path}")
|
||||||
|
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
||||||
|
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
|
||||||
|
vocos.load_state_dict(state_dict)
|
||||||
|
vocos.eval()
|
||||||
|
self.vocos = vocos
|
||||||
|
except:
|
||||||
|
print("Donwload Vocos from huggingface charactr/vocos-mel-24khz")
|
||||||
|
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
||||||
|
self.vocos = vocos
|
||||||
|
|
||||||
|
|
||||||
|
def gen_ref_audio(self):
|
||||||
|
"""
|
||||||
|
gen ref_audio
|
||||||
|
"""
|
||||||
|
audio, sr = torchaudio.load(ref_audio)
|
||||||
|
if audio.shape[0] > 1:
|
||||||
|
audio = torch.mean(audio, dim=0, keepdim=True)
|
||||||
|
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
||||||
|
if rms < target_rms:
|
||||||
|
audio = audio * target_rms / rms
|
||||||
|
if sr != target_sample_rate:
|
||||||
|
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
||||||
|
audio = resampler(audio)
|
||||||
|
self.ref_audio = audio
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
print(f'running {self.zmq_url}')
|
||||||
|
self.replier._run()
|
||||||
|
print('ended ...')
|
||||||
|
|
||||||
|
def gen_ref_text(self):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
# Add the functionality to ensure it ends with ". "
|
||||||
|
ref_text = self.ref_text
|
||||||
|
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
||||||
|
if ref_text.endswith("."):
|
||||||
|
ref_text += " "
|
||||||
|
else:
|
||||||
|
ref_text += ". "
|
||||||
|
self.ref_text = ref_text
|
||||||
|
|
||||||
|
def _load_model(self, repo_name, exp_name, model_cls, model_cfg, ckpt_step):
|
||||||
|
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
|
||||||
|
if not Path(ckpt_path).exists():
|
||||||
|
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
||||||
|
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
||||||
|
model = CFM(
|
||||||
|
transformer=model_cls(
|
||||||
|
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
|
||||||
|
),
|
||||||
|
mel_spec_kwargs=dict(
|
||||||
|
target_sample_rate=self.sample_rate,
|
||||||
|
n_mel_channels=n_mel_channels,
|
||||||
|
hop_length=hop_length,
|
||||||
|
),
|
||||||
|
odeint_kwargs=dict(
|
||||||
|
method="euler"
|
||||||
|
),
|
||||||
|
vocab_char_map=vocab_char_map,
|
||||||
|
).to(device)
|
||||||
|
|
||||||
|
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def load_model(self, model):
|
||||||
|
if model == 'F5-TTS':
|
||||||
|
ret = self._load_model(model, "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
||||||
|
return ret
|
||||||
|
if model == 'E2-TTS':
|
||||||
|
return self._load_model(model, "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
|
||||||
|
|
||||||
|
def split_text(self, text):
|
||||||
|
max_chars = int(len(self.ref_text.encode('utf-8')) / (self.ref_audio.shape[-1] / self.sample_rate) * (25 - self.ref_audio.shape[-1] / self.sample_rate))
|
||||||
|
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
|
||||||
|
print('ref_text', ref_text)
|
||||||
|
|
||||||
|
def inference(self, prmpt, stream=False):
|
||||||
|
generated_waves = []
|
||||||
|
max_chars = int(len(self.ref_text.encode('utf-8')) / (self.ref_audio.shape[-1] / self.sample_rate) * (25 - self.ref_audio.shape[-1] / self.sample_rate))
|
||||||
|
gen_text_batches = chunk_text(prompt, max_chars=max_chars)
|
||||||
|
for gen_text in gen_text_Batches:
|
||||||
|
# Prepare the text
|
||||||
|
text_list = [self.ref_text + gen_text]
|
||||||
|
final_text_list = convert_char_to_pinyin(text_list)
|
||||||
|
|
||||||
|
# Calculate duration
|
||||||
|
ref_audio_len = self.ref_audio.shape[-1] // hop_length
|
||||||
|
zh_pause_punc = r"。,、;:?!"
|
||||||
|
ref_text_len = len(self.ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, self.ref_text))
|
||||||
|
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
|
||||||
|
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
||||||
|
|
||||||
|
# inference
|
||||||
|
with torch.inference_mode():
|
||||||
|
generated, _ = self.model.sample(
|
||||||
|
cond=self.ref_audio,
|
||||||
|
text=final_text_list,
|
||||||
|
duration=duration,
|
||||||
|
steps=nfe_step,
|
||||||
|
cfg_strength=cfg_strength,
|
||||||
|
sway_sampling_coef=sway_sampling_coef,
|
||||||
|
)
|
||||||
|
generated = generated[:, ref_audio_len:, :]
|
||||||
|
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
|
||||||
|
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
||||||
|
if rms < target_rms:
|
||||||
|
generated_wave = generated_wave * rms / target_rms
|
||||||
|
if stream:
|
||||||
|
yield genreated
|
||||||
|
else:
|
||||||
|
# wav -> numpy
|
||||||
|
generated_wave = generated_wave.squeeze().cpu().numpy()
|
||||||
|
generated_waves.append(generated_wave)
|
||||||
|
if stream:
|
||||||
|
return
|
||||||
|
if self.cross_fade_duration <= 0:
|
||||||
|
# Simply concatenate
|
||||||
|
final_wave = np.concatenate(generated_waves)
|
||||||
|
else:
|
||||||
|
final_wave = self.cross_fade_wave(generated_waves)
|
||||||
|
fn = self.write_wave(final_wave)
|
||||||
|
return fn
|
||||||
|
|
||||||
|
def cross_fade_wave(self, waves):
|
||||||
|
final_wave = generated_waves[0]
|
||||||
|
for i in range(1, len(generated_waves)):
|
||||||
|
prev_wave = final_wave
|
||||||
|
next_wave = generated_waves[i]
|
||||||
|
|
||||||
|
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
|
||||||
|
cross_fade_samples = int(self.cross_fade_duration * self.sample_rate)
|
||||||
|
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
|
||||||
|
|
||||||
|
if cross_fade_samples <= 0:
|
||||||
|
# No overlap possible, concatenate
|
||||||
|
final_wave = np.concatenate([prev_wave, next_wave])
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Overlapping parts
|
||||||
|
prev_overlap = prev_wave[-cross_fade_samples:]
|
||||||
|
next_overlap = next_wave[:cross_fade_samples]
|
||||||
|
|
||||||
|
# Fade out and fade in
|
||||||
|
fade_out = np.linspace(1, 0, cross_fade_samples)
|
||||||
|
fade_in = np.linspace(0, 1, cross_fade_samples)
|
||||||
|
|
||||||
|
# Cross-faded overlap
|
||||||
|
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
|
||||||
|
|
||||||
|
# Combine
|
||||||
|
new_wave = np.concatenate([
|
||||||
|
prev_wave[:-cross_fade_samples],
|
||||||
|
cross_faded_overlap,
|
||||||
|
next_wave[cross_fade_samples:]
|
||||||
|
])
|
||||||
|
|
||||||
|
final_wave = new_wave
|
||||||
|
return final_wave
|
||||||
|
|
||||||
|
def write_wave(wave):
|
||||||
|
fn = temp_file(suffix='.wav')
|
||||||
|
sf.write(fn, wave, self.sample_rate)
|
||||||
|
return fn
|
||||||
|
|
||||||
|
def generate(self, d):
|
||||||
|
msg= d.decode('utf-8')
|
||||||
|
data = DictObject(**json.loads(msg))
|
||||||
|
print(data)
|
||||||
|
t1 = time()
|
||||||
|
f = self.inference(data.prompt)
|
||||||
|
t2 = time()
|
||||||
|
d = {
|
||||||
|
"audio_file":f,
|
||||||
|
"time_cost":t2 - t1
|
||||||
|
}
|
||||||
|
print(f'{d}')
|
||||||
|
return json.dumps(d)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
workdir = os.getcwd()
|
||||||
|
config = getConfig(workdir)
|
||||||
|
print(f'{config=}')
|
||||||
|
tts = F5TTS()
|
||||||
|
print('here')
|
||||||
|
tts.run()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
2
requirements.txt
Normal file
2
requirements.txt
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
git+https://github.com/SWivid/F5-TTS.git
|
||||||
|
git+https://git.kaiyuancloud.cn/yumoqing/apppublic
|
Loading…
Reference in New Issue
Block a user